Limit and Continuity

(a) $\lim _{x \rightarrow 2}[2(x+3)+7]$
(b) $\lim _{\mathrm{x} \rightarrow 0}\left(\mathrm{x}^{2}+3 \mathrm{x}+7\right)$
(c) $\lim _{x \rightarrow 1}\left[(x+3)^{2}-16\right]$
(d) $\lim _{x \rightarrow-1}\left[(x+1)^{2}+2\right]$
(e) $\lim _{\mathrm{x} \rightarrow 0}\left[(2 \mathrm{x}+1)^{3}-5\right]$
(f) $\lim _{x \rightarrow 1}(3 x+1)(x+1)$
2. Find the limits of each of the following functions:
(a) $\lim _{x \rightarrow 5} \frac{x-5}{x+2}$
(b) $\lim _{x \rightarrow 1} \frac{x+2}{x+1}$
(c) $\lim _{x \rightarrow-1} \frac{3 x+5}{x-10}$
(d) $\lim _{x \rightarrow 0} \frac{p x+q}{a x+b}$
(e) $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}$
(f) $\lim _{x \rightarrow-5} \frac{x^{2}-25}{x+5}$
(g) $\lim _{x \rightarrow 2} \frac{x^{2}-x-2}{x^{2}-3 x+2}$
(h) $\lim _{x \rightarrow \frac{1}{3}} \frac{9 x^{2}-1}{3 x-1}$
3. Evaluate each of the following limits:
(a) $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1}$
(b) $\lim _{x \rightarrow 0} \frac{x^{3}+7 x}{x^{2}+2 x}$
(c) $\lim _{x \rightarrow 1} \frac{x^{4}-1}{x-1}$
(d) $\lim _{x \rightarrow 1}\left[\frac{1}{x-1}-\frac{2}{x^{2}-1}\right]$
4. Evaluate each of the following limits :
(a) $\lim _{x \rightarrow 0} \frac{\sqrt{4+x}-\sqrt{4-x}}{x}$
(b) $\lim _{x \rightarrow 0} \frac{\sqrt{2+x}-\sqrt{2}}{x}$
(c) $\lim _{x \rightarrow 3} \frac{\sqrt{3+x}-\sqrt{6}}{x-3}$
(d) $\lim _{x \rightarrow 0} \frac{x}{\sqrt{1+x-1}}$
(e) $\lim _{x \rightarrow 2} \frac{\sqrt{3 x-2}-x}{2-\sqrt{6-x}}$
8. Find the value of 'a' such that $\lim _{x \rightarrow 2} f(x)$ exists, where $f(x)=\left\{\begin{array}{c}a x+5, x<2 \\ x-1, x \geq 2\end{array}\right.$
9. Let $f(x)=\left\{\begin{array}{c}x, x<1 \\ 1, x=1 \\ x^{2}, x>1\end{array}\right.$

Establish the existence of $\lim _{x \rightarrow 1} f(x)$.
10. Find $\lim _{x \rightarrow 2} f(x)$ if it exists, where

$$
f(x)=\left\{\begin{array}{c}
x-1, x<2 \\
1, x=2 \\
x+1, x>2
\end{array}\right.
$$

(b) If $f(x)=\left\{\begin{array}{l}4 x+3, \\ 3 x+2, \\ 3 x+5\end{array}\right.$, find whether the function f is continuous at $x=2$.
(c) Determine whether $f(x)$ is continuous at $x=2$, where

$$
f(x)= \begin{cases}4 x+3, & x \leq 2 \\ 8-x, & x>2\end{cases}
$$

(d) Examine the continuity of $f(x)$ at $\mathrm{x}=1$, where

$$
f(x)=\left\{\begin{array}{c}
x^{2}, x \leq 1 \\
x+5, x>1
\end{array}\right.
$$

(e) Determine the values of k so that the function

$$
f(x)=\left\{\begin{array}{cc}
\mathrm{kx}^{2}, & x \leq 2 \\
3, & x>2
\end{array} \text { is con tinuous at } x=2 .\right.
$$

(b) Test the continuity of the function $f(x)$ at $x=1$, where

$$
f(x)= \begin{cases}\frac{x^{2}-4 x+3}{x-1} & \text { for } x \neq 1 \\ -2 & \text { for } x=1\end{cases}
$$

(c) For what value of k is the following function continuous at $\mathrm{x}=1$?

$$
f(x)=\left\{\begin{array}{cc}
\frac{x^{2}-1}{x-1} & \text { when } x \neq 1 \\
k & \text { when } x=1
\end{array}\right.
$$

(d) Discuss the continuity of the function $f(x)$ at $x=2$, when

$$
f(x)=\left\{\begin{array}{lr}
\frac{x^{2}-4}{x-2}, & \text { for } x \neq 2 \\
7, & x=2
\end{array}\right.
$$

Determine the points of discontinuty, if any, of the following functions :
(a) $\frac{\mathrm{x}^{2}+3}{\mathrm{x}^{2}+\mathrm{x}+1}$
(b) $\frac{4 x^{2}+3 x+5}{x^{2}-2 x+1}$
(b) $\frac{x^{2}+x+1}{x^{2}-3 x+1}$
(d) $\quad f(x)=\left\{\begin{array}{c}x^{4}-16, x \neq 2 \\ 16, x=2\end{array}\right.$

Solution for finding points of discontinuity

Find the point of discontinuity for the following function:
$p(x)=\frac{x^{3}-4 x^{2}-5 x}{x^{2}-9 x+20}$

Explanation:

Start by factoring the numerator and denominator of the function.

$$
p(x)=\frac{x^{3}-4 x^{2}-5 x}{x^{2}-9 x+20}=\frac{x\left(x^{2}-4 x-5\right)}{(x-5)(x-4)}=\frac{x(x-5)(x+1)}{(x-5)(x-4)}=\frac{x(x+1)}{x-4}
$$

A point of discontinuity occurs when a number a is both a zero of the numerator and denominator.
Since $x=5$ is a zero for both the numerator and denominator, there is a point of discontinuity there. To find the y value, plug in 5 into the final simplified equation.

$$
\frac{5(5+1)}{5-4}=30
$$

$(5,30)$ is the point of discontinuity.

Find a point of discontinuity in the following function:
$f(x)=\frac{x^{2}+x-12}{x^{2}+2 x-8}$

Explanation:

Start by factoring the numerator and denominator of the function.
$f(x)=\frac{x^{2}+x-12}{x^{2}+2 x-8}=\frac{(x+4)(x-3)}{(x+4)(x-2)}=\frac{(x-3)}{(x-2)}$
A point of discontinuity occurs when a number a is both a zero of the numerator and denominator.
Since $x=-4$ is a zero for both the numerator and denominator, there is a point of discontinuity there. To find the y value, plug in -4 into the final simplified equation.
$\frac{-4-3}{-4-2}=\frac{7}{6}$
$\left(-4, \frac{7}{6}\right)$ is the point of discontinuity.

